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ABSTRACT 

Self-explanations are commonly used to assess on-line reading 
comprehension processes. However, traditional methods of 
analysis ignore important temporal variations in these 
explanations. This study investigated how dynamical systems 
theory could be used to reveal linguistic patterns that are 
predictive of self-explanation quality. High school students (n = 
232) generated self-explanations while they read a science text. 
Recurrence Plots were generated to show qualitative differences 
in students’ linguistic sequences that were later quantified by 
indices derived by Recurrence Quantification Analysis (RQA). To 
predict self-explanation quality, RQA indices, along with 
summative measures (i.e., number of words, mean word length, 
and type-token ration) and general reading ability, served as 
predictors in a series of regression models. Regression analyses 
indicated that recurrence in students’ self-explanations 
significantly predicted human rated self-explanation quality, even 
after controlling for summative measures of self-explanations, 
individual differences, and the text that was read (R2 = 0.68). These 
results demonstrate the utility of RQA in exposing and 
quantifying temporal structure in student’s self-explanations. 
Further, they imply that dynamical systems methodology can be 

used to uncover important processes that occur during 
comprehension. 

 

CCS CONCEPTS 
• Applied computing~Computer-managed instruction  
• Applied computing~Computer-assisted instruction 

KEYWORDS 
reading, text comprehension, dynamical systems theory, 
recurrence quantification analysis, self-explanation 

ACM Reference format: 

A.D. Likens, K.S. McCarthy, L.K. Allen, and D.S. McNamara. 2018.  
Recurrence Quantification Analysis as a method for studying text 
comprehension dynamics. In Proceedings of the International Conference on 
Learning Analytics and Knowledge, Sydney, Australia, March 2018 
(LAK’18), 10 pages. DOI: 10.1145/3170358.3170407  

1 INTRODUCTION 
Theories of reading comprehension generally assume that deep 
comprehension of text comes from the construction of a coherent 
mental model [1,2]. This mental model is a network of interrelated 
ideas that reflect both the information found explicitly in the text 
as well as semantically-related ideas from the earlier parts of the 
text and the reader’s prior knowledge. Features of the text, such 
as overlap between ideas and structural cues, affect the activation 
of concepts across the network. Importantly, these features are 
not uniformly represented across a text; thus, activation 
dynamically waxes and wanes as readers process text and 
discourse [3,4]. Additionally, these processes change based on 
metacognitive states of the learner and the knowledge that can be 
used to generate explanations for the text [3,5]. The changes in 
these processes suggest that comprehension should be examined 
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from a perspective that can account for these complex dynamics 
[e.g., 6,7] 

Dynamical systems theory (DST) provides a principled 
theoretical framework for studying the complexity and temporal 
variations in comprehension processes [e.g., 8]. In this paper, we 
draw on theoretical and methodological tools from DST to gain a 
deeper understanding of comprehension’s time course. The 
current study combines natural language processing (NLP) and 
DST to capture the temporal characteristics of the self-
explanations that students generate as they read. In part, we 
replicate the work in [6], in which a DST method, Recurrence 
Quantification Analysis, was used to demonstrate that temporal 
dynamics of students’ self-explanations predict their eventual 
comprehension of text. We extend this work with a new dataset 
and further the understanding of the temporal aspects of the 
comprehension process. Specifically, this study investigates how 
the recurrent patterns that occur across multiple self-explanations 
relate to the average quality of the self-explanations.  

1.1 Text Comprehension as a Dynamic Process 
Dynamical systems are composed of multiple interacting 
components and evolve within a phase space, a coordinate system 
whose axes correspond to the variables (i.e., order parameters) 
needed to characterize the ongoing state of the system in question 
[9]. Importantly, a key characteristic of these systems is that the 
patterns they produce cannot simply be reduced to their 
component properties. Instead, these higher-order patterns, or 
attractors, emerge from the process of self-organization. That is, 
patterns emerge, stabilize, change, and dissipate as a natural 
consequence of local interactions among the system’s lower-level 
components as well as any constraints placed on the system. 
Constraints may be random fluctuations from the environment or 
parameters of the system (non-specific control parameters) that 
when tuned to critical points result in a qualitative change in an 
observable variable (order parameter). Interaction of system 
components results in properties that are observable features of 
data and provide clues to the underlying system dynamics [10]. 

A simple illustration helps to make these ideas concrete. This 
example is not provided as a template for the dynamics expected 
to emerge from students’ natural language patterns, as these 
processes generate patterns that are far more complex (e.g., 
[6,11,12]. Nonetheless, a commonly referenced system in the 
motor control literature is the one that forms with alternate 
swinging of the limbs [13,14]. At slow speeds, two patterns 
dominate, an inphase pattern where the angle between the limbs 
is 0°, and an antiphase pattern where the angle between the limbs 
is 180°. However, faster speeds result in a phase transition such 
that only one pattern, 0°, remains stable. In this simple example, 
the phase relations between the limbs are the patterns (i.e. 
attractors) that emerge from the interaction of the systems’ 
components, the limbs. The singular control parameter is the 
speed of the limbs. When speed reaches a critical point, the system 
exhibits a qualitative change in behavior: the elimination of the 
180° pattern. This simple system captures several properties of a 
dynamical system (e.g., attractors, control parameters, order 
parameters, and phase transitions) [9,10], but also tacitly 

emphasizes time as an important feature of dynamical systems, a 
feature that plays an important role in the identification and 
analysis of patterns in students’ natural language responses. 

There is now considerable evidence that DST can be applied in 
a variety of psychological [9,15,16] and educational [17] settings. 
A full review of that literature is beyond the current scope; 
however, there have been several studies to reveal dynamic 
properties of comprehension processes [6,7,18-24]. While most 
studies that have applied DST to reading comprehension have 
focused on reading times, recent work has demonstrated 
application of DST directly to text [6,7]. Of particular relevance is 
the work applying DST to assess the nature of students’ self-
explanations [6]. 

Self-explanation provides an ideal space to explore the 
dynamics of comprehension. Students who self-explain construct 
more coherent mental models and subsequently learn more from 
the text [25-30], particularly when they use effective 
comprehension strategies [31,32]. Self-explanations not only 
promote comprehension, but can also provide windows into 
ongoing, dynamically evolving processes. Self-explanations are 
sensitive to mental model construction and reflect the impact of a 
variety of individual differences on comprehension [3,33]. 
Importantly, self-explanations are also sensitive to the text 
structure, metacognitive states, and the knowledge that can be 
used to generate explanations for the text [3,5].  

Our assumption is that the content of students’ self-
explanations provides a suitable order parameter for exploring 
emergent comprehension processes. We hypothesize that 
patterns found in the words that students produce will provide a 
unique window into the dynamic processes so often assumed to 
undergird the comprehension of text. To test the utility of DST 
approaches for understanding on-line comprehension processes, 
we explored data collected in the context of a self-explanation 
tutoring system, iSTART. 

1.2 iSTART  
The Interactive Strategy Training for Active Reading and 
Thinking, or iSTART, is an intelligent tutoring system (ITS) 
designed to improve reading comprehension through self-
explanation training [34,35]. Prompting students to explain the 
text to themselves as they read has been shown to increase the 
generation of inferences and the comprehension of complex, 
informational texts [26]. Importantly, self-explanation skills can 
be improved through training and practice [31,32]. 

iSTART uses video lessons, Coached Practice, and game-based 
practice to help students generate high quality self-explanations. 
Students first watch a lesson video about the purpose and value 
of self-explaining. They then view videos about five effective 
reading comprehension strategies: comprehension monitoring, 
paraphrasing, predicting, bridging, and elaboration. After a brief 
summary video, students are transitioned to a round of Coached 
Practice. During Coached Practice, students read texts are 
prompted to generate self-explanations at various target 
sentences. After each self-explanation, they receive a summative 
score and formative feedback from a pedagogical agent and are 
given the opportunity to revise. Students complete one full text in 
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Coached Practice and are then transitioned to the practice 
environment in which they can engage in more Coached Practice 
or two types of game-based practice: generative and identification 
games. In the generative games, students earn points and in-
system currency (iBucks) for writing high quality self-
explanations. iBucks can be used to customize the environment or 
to play the identification games. In the identification games, 
students identify which of the five strategies is being used in an 
example self-explanation. iSTART has been shown to improve 
comprehension for middle school [36], high school [37,38] and 
college students [39,40].  

1.3 Assessing Self-Explanations 
The assessment of self-explanations is critical to the feedback 
cycle within iSTART. Self-explanations can reveal comprehension 
processes that occur during reading [e.g., 3,5,31]. Important to the 
current work, the way in which these self-explanations are 
assessed can reveal different aspects of these processes. In the 
following section, we review some common approaches to 
analyzing self-explanation data. Then, we focus attention on a 
relatively new time series analysis tool developed in the study of 
dynamical systems, Recurrence Quantification Analysis.  

1.4 Conventional Approaches 
In iSTART, self-explanations are automatically scored to assess 
quality and to provide actionable feedback for improvement. Self-
explanations can be reliably evaluated by both humans and 
natural language processing tools [34,41].  

One method of scoring is identifying the presence, accuracy, 
and sophistication of various comprehension strategies. For 
example, a self-explanation might include information that is 
paraphrased from the text, but also include elaboration. This 
elaboration is then scored for whether information comes from 
domain knowledge or general knowledge, such as personal 
experience [42]. Latent Semantic Analysis (LSA) [43,44] can also 
be used to identify the types of strategies students generate in 
their protocols [45,46]. 

In iSTART, students’ self-explanations are given scores from 
0-3 that reflect the use of different strategies. The algorithm is 
based on human ratings of self-explanations. As shown in Table 
1, scores of 0 and 1 indicate lower-level processing, such as 
paraphrasing the target sentence. Scores of 2 or 3 indicate that the 
student has generated an inference, either connecting ideas from 
across the text or by integrating information from prior 
knowledge [47]. 

This 0-3 human rating is the basis for the iSTART self-
explanation scoring algorithm. This algorithm relies on natural 
language processing (NLP) tools to identify linguistic features that 
are predictive of these scores. Word-based indices (e.g., response 
length, content-word overlap) are used as an early filter to identify 
0 and 1 self-explanations. LSA is used to determine how ideas in 
the self-explanation relate to ideas in other parts of the text or 
relevant prior knowledge [36]. The algorithm is as accurate as 
humans in providing a summary of cognitive processes involved 
in comprehension [41,47]. 

Table 1. Self-explanation scoring rubric 

Scor
e 

Label Description 

0 
Vague, 
irrelevant 

Contains unrelated, vague, or non-
informative information; is too short; 
is too similar to the target sentence 

1 
Sentence-
focused Focuses only on the target sentence 

2 
Local-
focused 

Includes 1-2 ideas from the text 
outside of the target sentence 

3 Global-
focused 

Incorporates information from 
multiple ideas across the text or 
prior knowledge 

 
Both the human scores and algorithms are designed to assess 

individual self-explanations. This is useful for providing feedback 
on each trial, but provides a relatively small window of 
information in terms of learning analytics. Students’ performance 
is generally measured by averaging their self-explanation scores 
across a text or even across multiple texts in a training session. 
Such an approach allows for a more holistic view of student 
comprehension, but it ignores temporal variations and the natural 
patterns and structures in the students’ language that can be 
indicative of comprehension. 

More recently, a number of studies have explored the use of 
“aggregated self-explanations” to provide a richer data set with 
which to assess readers’ comprehension processes [6,48,49]. For 
example, Allen et al. (2017) demonstrated that dynamical analyses 
of a student’s aggregated self-explanation and summative word 
metrics accounted for 32% of the variance in comprehension 
scores for that text.  

In the current work, we explore how the temporal structure of 
self-explanations relates to text comprehension in two ways. Our 
first aim is to replicate findings in [6] with a new data set to 
demonstrate that indices obtained from dynamical analysis of self-
explanations predict overall post-reading text comprehension 
scores. Second, we seek a better understanding of how these 
recurrent patterns relate to on-line comprehension processes that 
emerge during reading. Toward this objective, we leverage 
Recurrence Quantification Analysis to assess the degree to which 
these dynamical indices in aggregated self-explanations relate to 
the quality of students’ self-explanations.  

1.5 Recurrence Quantification Analysis 
Repeating patterns are fundamental characteristics of many 
complex, dynamical systems [50]. These patterns range in 
complexity from simple sinusoids to fully realized chaos [9], and 
many methods are available to characterize time series structures 
[51-56]. However, most dynamical methods impose strict 
assumptions about the time series in question (e.g., stationarity, 
long time series). The recurrence plot was introduced to address 
those potentially limiting assumptions [57]. Since then, a 
powerful theoretical and methodological framework has 
developed that permits the study of dynamical systems regardless 
of time series properties or their generating processes. This 
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general framework called Recurrence Quantification Analysis has 
proven to be an indispensable asset in varied domains such as: 
cognitive science, complexity science, learning analytics, 
linguistics, and physiology [e.g., 6,7,12,57-67].  

In the following paragraphs, we introduce both the recurrence 
plot (RP) and its quantitative extension, Recurrence 
Quantification Analysis (RQA). In both cases, our presentation 
generally unfolds within the context of text analysis.  However, 
an important point to make is that recurrence plots and RQA were 
both originally developed in the study of continuous-time 
dynamical systems. This point is made because application of 
RQA to other forms of behavioral data common to the learning 
analytics community (e.g., eye movements, reading times, or 
physiological data) requires additional methodological steps not 
considered in our treatment. For that reason, we refer the reader 
to [65] for a review of this more general form of RQA but also to 
other classic treatments on attractor reconstruction [e.g., 51,68]. 
 A recurrence plot (RP) is a valuable tool for visualizing the 
temporal evolution of dynamical systems [e.g., 7,57,65]. Its 
purpose is to capture instances when a dynamical system revisits 
similar points in phase space. As a non-technical but still valid 
introduction to the construction of recurrence plots for text series, 
consider the following sentence (numerals above words are 
positional indices):  
 
1 2 3 4 5 
Imagine an imaginary menagerie manager 
     
6 7 8 9 10 
imagining managing an imaginary menagerie. 

 
This sentence contains 10 words but only 7 of those words are 
unique. The phrase “an imaginary menagerie” first appears at 
positions 2-4 but then repeats at positions 8-10. That is, the text 
contains a recurrence of this three-word phrase.  

 

Figure 1. Example recurrence plot.  

Figure 1 is the RP for this simple example and provides a 
visualization of the recurrent structure just described. The words 

in the series are placed on both the horizontal and vertical axes 
and are represented by their positional indices. Recurrent points 
are plotted whenever a word is repeated and produce a plot that 
is symmetric about the main diagonal. Here, the main diagonal 
may be regarded as a simple reminder of the identity relationship 
between the series that form the horizontal and vertical axes. Note 
that the main diagonal is relevant in some bivariate and 
multivariate forms of RQA [65,69]. In the present case, however, 
only the off-diagonal elements are important for interpretation. 
Off-diagonal points represent recurrent words (i.e., the word “an” 
appears at both positions 2 and 8). Sequences of points that are 
parallel to the main diagonal are called lines and represent longer 
sequences of words that repeat over time (e.g., “an imaginary 
menagerie”). 

The preceding example illustrates both the ease and utility of 
visualizing recurrent structure in text, allowing for qualitative 
descriptions of temporal dynamics [57]. While these qualitative 
descriptions can be useful, often the patterns observed in 
recurrence plots are not easily described and subtle structure may 
be difficult to resolve by visual inspection alone. Recurrence 
quantification analysis addresses those problems by providing 
several metrics to quantify the structure found in recurrence plots. 
These indices provide additional information about the 
underlying dynamics implied by recurrence plots and allow for 
statistical comparison across recurrence plots and experimental 
conditions [65,67]. Below, we provide descriptions for several 
common RQA indices. 

Recurrence Rate (RR). Recurrence rate is arguably the most 
common RQA metric and is given by the ratio of the number of 
recurrent points to the square of the length of the time series. This 
metric effectively captures the overall tendency for recurrence 
while ignoring specific patterns or clustering.  

Determinism (DET). Determinism measures how frequently 
recurrent points fall on diagonal lines, ignoring the main diagonal. 
Specifically, DET is the percentage of recurrent points that fall on 
a line. 

Number of Lines (NRLINE). This measure is simply a count 
of the number of recurrent sequences of length ≥ 2. 

Average Line Length (L). Lines are considered as diagonal 
structures, parallel to the main diagonal, consisting of two or more 
recurrent points. However, line lengths may vary considerably 
from this baseline definition. Average line length provides a 
measure of central tendency, the typical line length found in a 
recurrence plot.  

Maximum Line Length (MAXLINE). This metric captures 
the length of the longest diagonal sequence of recurrent states. 
This measure provides information about the stability of 
underlying attractor dynamics. This measure also provides a 
theoretical connection to the larger dynamical systems literature: 
maximum line length is inversely proportional to the Largest 
Lyapunov Exponent, a widely use index of attractor stability 
[51,68]. 

Entropy (ENTR). Entropy provides a complimentary measure 
of the stability of recurrent structures, and is given by the 
Shannon [70] entropy of the distribution of the line lengths in the 
recurrence plot. Entropy reaches a maximum in the case of 
randomness and minimum in the case of a completely ordered 
system.  

10 * *

9 * *

8 * *

7 *

6 *

5 *

4 * *

3 * *

2 * *

1 *

1 2 3 4 5 6 7 8 9 10

Word Number

W
o
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u
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Normalized Entropy (rENTR). This index normalizes 
Shannon entropy based on the number of recurrent lines that are 
observed in the recurrence plot. 

1.6 The Current Study 
Previous work suggested that dynamical indices can serve as 
strong predictors of text comprehension at multiple levels (e.g., 
text-based, bridging, and overall). In this study, our aim is to 
expand on the findings in [6] by demonstrating that dynamical 
patterns also predict self-explanation quality, even after 
considering individual differences, summative measures and the 
influence of the text itself. 

2 METHODS 

2.1 Participants 
The participants were 232 (147 female; Mage = 15.90) current high 
school students and recent high school graduates from the 
southwestern United States. The sample was 48.7% Caucasian, 
23.1% Hispanic, 10.7% African-American, 8.5% Asian, and 9.0% 
identified as other ethnicities. Participants were given financial 
compensation for their participation in the study. 

2.2  Procedure  
These data were collected during the pretest of a larger, five-
session study. Participants first completed a demographic 
questionnaire that included items regarding age, ethnicity, native 
language, and prior knowledge. They then completed the Gates-
MacGinitie Reading Test [71], which is a standardized 
comprehension assessment. Participants then read one of two 
texts (Red Blood Cells and Heart Disease) that have been used in 
previous research [72,73] These texts were of similar length (311 
and 283 words, respectively) and were matched for linguistic 
difficulty using both Flesch-Kincaid [74] that assesses surface 
features and Coh-Metrix [75] that assesses syntactic and semantic 
aspects of readability. For each text, participants were prompted 
to self-explain for nine target sentences and then answer eight 
open-ended comprehension questions. Half of these questions 
were designed to assess surface, or textbase comprehension and 
the other half were designed to assess deeper comprehension that 
relies on connecting information from different parts of the text 
or integrating information from prior knowledge. 

2.3 Data Processing 
The self-explanations were scored from 0-3 using the rubric in 
Table 1. Two raters independently scored a random subset of 10% 
of the self-explanations and achieved acceptable reliability 
(Cohen’s kappa = .844). These raters then scored the remainder of 
the self-explanations. 

To generate and quantify the recurrence plots, all nine of each 
students’ self-explanations were combined into a single 
aggregated self-explanation. This aggregated self-explanation 
time series was cleaned by removing punctuation and converting 
all words to lower case. Each word was then stemmed and 
assigned a categorical numeric code. For the example sentence 

given earlier – Imagine an imaginary menagerie manager 
imagining managing an imaginary menagerie. – the categorical 
numeric code would be (1, 2, 3, 4, 5, 6, 7, 2, 3, 4).  

In addition, we also computed three summative measures of 
self-explanation: number of words, average word length, and 
type-token ratio. The purpose of these indices was to determine 
whether the RQA indices provided unique predictive power of the 
self-explanation scores over basic summative metrics. 

3 RESULTS  

3.1 Qualitative 
Recurrence plots provide useful visualizations of recurrent 
structures. In this section, we contrast two examples of recurrence 
plots. The recurrence plots presented in Figures 2 and 3 represent 
the structures obtained from aggregated self-explanations that 
were deemed to be of average (Figure 2), and high (Figure 3) 
quality. In this section, we discuss the differences between these 
two recurrence plots in order to foreshadow the quantitative 
results reported in in the subsequent section. Before proceeding, 
though, a cautionary note is in order. It is often tempting to make 
value judgments when qualitatively assessing recurrence plots. 
Researchers are sometimes biased to evaluate obvious structure as 
‘good’ and more subtle patterns as ‘bad’. As will be seen, however, 
assessment of Figures 2 and 3 and the text characteristics they 
imply suggest that the patterns found in recurrence plots must 
always be considered within the context of the behavior they 
represent. 

The qualitative assessment begins with Figure 2 and the 
obvious regularity with which diagonal line segments appear 
across the plot. Closer inspection reveals that the lines are 
generated from a sequence of words that recur with a period of 
about 25 words. This level of periodicity relative to the overall 
number of recurrent points leads one to expect that Determinism 
might be quite high for this participant. However, as noted in the 
preceding paragraph, it is vitally important to consider recurrence 
plots in context. Here the context is self-explanation of text, and 
while, one would naturally expect some repetition of words and 
phrases as students work to make inferences [cf. 6], this level of 
regularity is surprising and likely suspect. Inspection of actual text 
for this participant reveals the origin of the pattern – the majority 
this participant’s self-explanation began with exact same five 
words, “This is sentence is saying that…”. Thus, while the 
explanations are of enough length, the number of substantive 
words (i.e., related to the actual text) are relatively limited. This 
overly rigid form of self-explanation may explain, at least in part, 
why this student’s self-explanations were not, on average, 
evaluated as being high quality. 

The patterns in Figure 3 provide a stark contrast to the structure 
observed in Figure 2. The strong periodicity of Figure 2 has been 
replaced by patterns far less regular. Despite the lack of obvious 
structure, this student’s self-explanations were consistently 
judged to be high in quality. Moreover, even without any strict 
periodicity, a complex structure is apparent. Viewing Figure 3  
from left to right reveals in the upper triangle several clustering 
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patterns interspersed with seemingly random collections of 
recurrent points. The implication of Figure 3 when considered 
together with Figure 2 is that the student who generated Figure 3 
fluctuated between bursts of repetition and bursts of novel text 
production. In the next section, we explore how quantitative 
analysis of recurrence plots echoes these descriptions and 
provides deeper insight into the quality of self-explanations. 
Specifically, we report on statistical analyses involving individual 
differences, summative measures, and RQA indices in order to 
understand the relative role of each in the prediction of self-
explanation quality.  

 

Figure 2. Recurrence plot for a series of self-explanations 
judged to be of average quality (M = 1.67). RQA indices for 
this recurrence plot are: RR = 1.27, DET = 27.23, NRLINE= 
60.  

3.2 Quantitative 
Our central questions connect online cognitive dynamics to the 
quality of self-explanation. In this section, we provide descriptive 
statistics of RQA indices and then we demonstrate how these 
features predict human ratings of self-explanation quality, after 
controlling for reading ability and text. Allen et al. [6] showed that 
RQA indices (e.g., Number of Lines and Maximum Line Length) 
were strong predictors of comprehension test scores. Here, we 
conduct several quantitative analyses to investigate the relations 
between RQA indices and average self-explanation quality.  

Pearson correlations were computed between the average 
human ratings of self-explanation quality and RQA indices 
presented in Section 1.5. Number of Lines and Maximum Line 
Length were both heavily skewed; hence, logarithmic 
transformations were applied to both of those variables before 
further analysis. Pearson correlations between RQA indices and 
SE Quality appear in Table 3. Correlations between RQA and 

comprehension scores were included for replication of and 
comparison to results in [6].  

 

Figure 3. Recurrence plot for a series of self-explanations 
judged to be of high quality (M = 2.56). RQA indices for this 
recurrence plot: RR = 1.69, DET = 12.92, NRLINE = 228. 

Table 2. Correlations of RQA Indices with Human Scores 
of Self-Explanation Quality and Comprehension 

RQA Indices SE Quality Comprehension 

Recurrence Rate -0.02 0.02 

Determinism -0.18 -0.12 

Log Number of Lines 0.71*** 0.42*** 

Log Longest Line 0.31*** 0.13* 

Average Line Length -0.15 -0.14 

Entropy 0.00 -0.10 

Normalized Entropy -0.34*** -0.34*** 
 

We further explore those relationships while simultaneously 
considering individual difference measures as well as summative 
measures of the self-explanations (i.e., number of words, mean 
word length, and type-token ratio). As students read one of two 
texts, we also included a dummy variable (0 = Heart Disease, Red 
Blood Cells = 1) to account for differences as a function of text. 
These variables along with the RQA indices listed in Table 3 
were entered into a stepwise regression model. Self- explanation 
quality, averaged across an entire text, was the dependent 
variable. The model was significant, F(5,225) = 94.55, p < 0.001, R2 
= 0.68, and retained five predictors. The predictors for the final 
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model are given in Table 3 along with standard errors and t 
statistics.  

Table 3. Stepwise Regression Coefficients and Statistics 

Predictor Estimate SE t p  

(Intercept) 0.85 0.12 7.31 <0.001 

GMRT Z-Score 0.07 0.02 3.44 <0.001 

logNRLINE 0.39 0.02 
18.4

6 <0.001 

RR -0.27 0.05 -5.22 <0.001 

DET -0.02 0.00 -8.26 <0.001 

HD = 0, RB = 1 0.15 
0.0

4 3.35 <0.001 
 
This final model obtained from stepwise regression generated 

several notable findings. For instance, none of the summative 
variables were retained, suggesting that RQA indices were 
stronger predictors of self-explanation quality. The results further 
show that, after controlling for the text that participants read and 
the three RQA indices, a one standard deviation increase in 
reading ability predicted a 0.07 point increase in average self-
explanation quality. Likewise, after controlling for reading ability 
and RQA indices, the model indicated participants who read the 
red blood cells text produced self-explanations 0.15 points higher 
in quality than participants who read the heart disease text. Two 
of the RQA indices had negative coefficients. A 1 percent increase 
in RR predicted a 0.27 decrease in average self-explanation quality 
and a 1 percent increase in DET predicted that average self-
explanation quality would decreased by 0.02. In contrast, a one 
unit increase in log number of lines predicted a 0.39 increase in 
average self-explanation quality. This latter result seems 
somewhat surprising given the negative relations between self-
explanation quality and the other two RQA indices. We return to 
these seemingly conflicting results in the discussion but preview 
that treatment by suggesting that inversely signed coefficients for 
the RQA indices may be capturing the difference between simple 
repetitions of phrases and recurrent structure indicative of deeper 
forms of comprehension. 

The results from the stepwise regression revealed which 
features explained the most variance in self-explanation quality. 
The stepwise regression procedure was followed up by 
conducting a hierarchical regression in order to understand the 
relative contributions of the retained predictors to the overall 
model fit.  

A hierarchical regression was conducted to further explore the 
predictive value of RQA indices after accounting for individual 
differences and text. All models included human ratings of self-
explanation quality, averaged across an entire text as the 
dependent variable. Model 1 included reading skill (GMRT), and a 
dummy variable representing the between-subjects effect of text 
(i.e. Red Blood Cells and Heart Disease). GMRT was normalized 
prior to further analysis to aid in interpretation. The overall model 
was significant, F(2,228) = 20.51, p < 0.001, R2 = 0.15. The model 

further indicated that average SE Quality did not differ as a 
function of text (β = -0.07, SE = 0.06); however, GMRT was a 
significant predictor (β = 0.19, SE =0.03, p < 0.001) suggesting that, 
after controlling for the text participants read, a one standard 
deviation increase in reading ability predicts a 0.19 point increase 
in average SE Quality. Model 2, in addition to reading skill and the 
between subject variable of text, included as predictors the three 
RQA indices retained from the stepwise regression procedure: log 
of number of lines, recurrence rate, and determinism. The addition 
of the RQA indices improved model fit, F(3, 225) = 122.11, p < 
0.001, ΔR2 = 0.53. Collectively, the models presented in this section 
imply that RQA indices are strong predictors of self-explanation 
quality, even after accounting for reading ability and the 
eccentricities of reading a particular text. 

4 DISCUSSION 
In this study, students generated self-explanations while reading 
one of two scientific texts. Individual self-explanations were 
evaluated for overall quality by expert raters and were later 
submitted to RQA in order to expose and quantify recurrent 
patterns of words that emerged across time. The results of the 
current study are consistent with those in [6] demonstrating that 
dynamical systems theory approaches can be leveraged to provide 
information about critical comprehension processes above and 
beyond that of more traditional summative measures. Further, 
they extend these findings by revealing that the recurrent patterns 
in students’ natural language responses were predictive of the 
quality of the self-explanations.  

The current results demonstrate how these measures provide 
additional insight into the structure of recurrence plots of self-
explanation time series. In particular, the combination of reading 
ability, the text students read, and three RQA indices (log of 
number of lines, recurrence rate, and determinism) accounted for 
68% of the variability in average self-explanation quality. RQA 
indices alone accounted for 53%. The large amount of variance 
accounted for by RQA indices is demonstrable evidence in favor 
of exploring the temporal aspect of self-explanations. 

The recurrence plots displayed in Figures 2 and 3 showcase the 
method’s ability to distinguish between self-explanations that 
differ in quality. The student whose self-explanations were judged 
to be of average quality exhibited an overt form of regularity; the 
high performing student generated a complex recurrence pattern 
reminiscent of systems that exhibit deterministic chaos [67]. 
Deterministic chaos refers to a form of variability found in 
nonlinear dynamical systems, including human physiology [76]. 
Such systems are said to exhibit apparent randomness, that is, they 
seem to vary randomly from one moment to the next but actually 
have a complex form of structure. Importantly, these systems are 
strike a balance between order and disorder, a characteristic 
implied by the observed pattern of coefficients discussed next. 

In addition to overall model fit, the signs of coefficients in the 
above models reveal important information about the relationship 
between recurrent word use and self-explanation quality. Of 
particular note is that Determinism and Recurrence Rate had 
negative signs while log number of lines had a positive coefficient. 
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These results seem somewhat contradictory given that all three 
measures are related to the amount of recurrent structure present 
in a plot. To interpret these findings, refer back to the recurrence 
plots explored in Section 3.1. The predictable pattern of oscillation 
led us to suppose that Determinism would be high in Figure 2. The 
lack of such regularity in Figure 3 suggests the opposite, although 
Figure 3 does contain a substantial amount of recurrent words that 
are arranged in short diagonal lines. RQA indices for those two 
graphs bear out those descriptions – Determinism and Recurrence 
Rate were higher in Figure 2 than Figure 3, but Figure 3 had larger 
number of lines. 

The dissimilarity in recurrent structure in those two figures 
follows the same pattern as the coefficients in Table 4. How might 
these patterns be explained within the context of self-explanation 
quality? The results suggest that producing high quality self-
explanations requires striking a balance between repetition of 
previously referenced material and novel elaboration. This result 
is consistent with a great deal of literature on skillful coping in 
the dynamical systems literature [77-80] The findings in those 
papers suggest that adapting to the task at hand requires finding 
an optimal balance between being overly random and overly rigid. 
More plainly, the results suggest a high proportion of determinism 
or recurrence alone could be indicative of an overly rigid pattern 
of self-explanation. In contrast, having a large number of lines 
while keeping the overall recurrence rate and determinism low 
suggests that students may be striking an optimal balance 
between revisiting concepts encountered earlier in a text (i.e., 
making bridging inferences) and producing novel text (i.e., 
elaboration). Indeed, these results are consistent with the work in 
text comprehension suggesting that deep comprehension requires 
the construction of a mental model that has information from 
prior knowledge integrated with the information provided 
explicitly in the text.  

The explanation we have offered for this pattern of 
correlations is not the only one possible. We have interpreted 
results based on the combination of regression coefficients and 
recurrence plots for average and high performing students. 
Recurrence plots were chosen to emphasize the sometimes 
surprising patterns observed for students who produce self-
explanations of differing quality. Given the relation between the 
recurrence plots and the regression coefficients, it is possible that 
some form of nonlinear relationship exists among the recurrence 
metrics and average score. Such relations, however, were not 
among our original hypotheses and will require further study. 

In sum, the comprehension processes that underlie how 
students read and learn from text demonstrate dynamical 
properties that can be captured by methodologies that are 
sensitive to changes over time. Assessing these properties can 
reveal increasingly nuanced information about what students 
know and the strategies and processes in which they engage. 
Additionally, Recurrence Quantification Analysis provides 
powerful qualitative and quantitative information that can be 
used together to model student performance. 

 
 

4.1 Applications and Future Directions 

The promise of this exploratory modeling of student 
performance in terms of recurrent text structure suggests a 
number of possibilities for future research and applications. Both 
the current results and the results in [6] suggest that the temporal 
structure of self-explanations may be a powerful predictor of 
reader comprehension. This further suggests that it may be 
possible to enhance tutoring systems such as iSTART to deliver 
more rapid and accurate feedback to both students and 
instructors. As Figure 2 suggests, RQA could alert instructors to 
situations when students are ‘stuck’ in suboptimal patterns of 
explanation. Similarly, RQA could be leveraged to generate 
automated feedback directly to the student. The techniques 
presented here could also be used to augment adaptive features in 
intelligent tutoring systems, delivering tailored learning 
experiences to students in real (or near real) time.  Those efforts 
are encouraged by success in real-time applications of tools 
inspired by dynamical systems theory in other domains such as 
team communication [89] as well as ongoing work involving the 
new StairStepper module in iSTART [90]. If so, then analytical 
tools such as RQA may allow us to develop training tools that are 
not only user-centered but tailored to temporally dynamic states 
of the user. 

RQA is a subset of a larger dynamical systems analytical 
framework that involves both categorical and continuous time 
series [51-56]. Future work will explore the utility of this approach 
in time-varying categorical and continuous linguistic features 
extracted from constructed responses. These features will include 
other categorical data such as parts of speech [12] but will also 
extend capabilities of RQA to capture nuances in students’ self-
explanations by exploring the temporal variation in continuous 
linguistic features such as word frequency or topic similarity. A 
particularly exciting future direction will involve investigating 
the simultaneous evolution of multiple linguistic features using 
joint recurrence quantification analysis.  

Lastly, we note that the application of dynamical systems 
theory to reading comprehension assessment is still in its infancy. 
Our future efforts will involve leveraging this vast theoretical and 
methodological framework in order to model comprehension 
processes more directly and at more fine-grained levels. For 
instance, we have recently begun investigating how random walk 
theory may provide insight into the time-course of self-
explanation quality [91].  The success of the current approach 
across so many other settings suggests dynamical systems theory 
in conjunction with rigorous reading comprehension theory as a 
powerful source of principled learning analytics. 
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